Signalling pathways that regulate endothelial differentiation from stem cells.
نویسندگان
چکیده
Endothelial cells play a vital role in the human vascular system. Injury to this layer of cells can lead to devastating consequences and eventually mortality. As demonstrated by recent accumulating evidences, the injured endothelial layer can be rescued by endothelial cell-based therapy. However, the limited source of functional endothelial cells which can be used in clinical surgery, is hugely hampered. The discovery of pluripotent embryonic stem cells, nevertheless has raised hope for generating endothelial cells in the regenerative medicine field. It was demonstrated that the concerted and coordinated series of specific signaling pathways involving different molecules, guide the differentiation of these embryonic stem cells into functional endothelial cells. Moreover, it is believed that understanding the molecular mechanisms of endothelial development and signal pathways leading to endothelial differentiation from stem cells, will be essential for potential cell therapy for vascular disease. This review therefore, will summarize and discuss recent insights into endothelial development and the signaling pathways regulating embryonic stem cell differentiation towards the endothelial lineage.
منابع مشابه
Regulation of gene expression in tissue engineering, differentiation and bone regeneration of ossifying stem cells
Cells that make up the bodychr('39')s tissues are usually three-dimensional architecture, the threedimensional culture system enables cells to create natural and in vivo interactions which is an ideal environment for 3D (Three-dimensional) cell growth and issues such as exchange of similar food exchanges inside Capillary in living tissue. In tissue engineering discussion, cell scaffolding is hi...
متن کاملDifferentiation of Umbilical Cord Lining Membrane-Derived Mesenchymal Stem Cells into Endothelial-Like Cells
Background: Stem cell therapy for the treatment of vascular-related diseases through functional revascularization is one of the most important research areas in tissue engineering. The aim of this study was to investigate the in vitro differentiation of umbilical CL-MSC into endothelial lineage cells. Methods: In this study, isolated cells were characterized for expression of MSC-specific marke...
متن کاملSpecification of Hemato-Endothelial-Like Structures and Generation of Hematopoietic Progenitor Cells from Human Pluripotent Stem Cells
Background and purpose: Human pluripotent stem cells (hPSCs) with the ability to differentiate into adult cells have provided a new perspective for treatment of some diseases. But, the efficiency of differentiation methods to generate hematopoietic progenitor cells (HPCs) is faced with multiple challenges. In the present study, we investigated the formation of hemato-endothelial-like structure...
متن کامل3D study of capillary network derived from human cord blood mesenchymal stem cells and differentiated into endothelial cell with VEGFR2 protein expression
New blood forming vessels are produced by differentiation of mesodermal precursor cells to angioblasts that become endothelial cells (ECs) which in turn give rise to primitive capillary network. Human cord blood (HCB) contains large subsets of mononuclear cells (MNCs) that can be differentiated into endothelial-like cells in vitro. Human mononuclear progenitor cells were purified from fresh umb...
متن کاملفاکتورهای نسخهبرداری کلیدی موثر در تمایز سلولهای بنیادی مزانشیمی: مقاله مروری
Stem cells are undifferentiated biological cells that can differentiate into more specialized cells and divide (through mitosis) to produce more stem cells (self-renew). In mammals, there are two broad types of stem cells: embryonic stem cells, which are isolated from the inner cell mass of blastocysts, and adult stem cells, which are found in various tissues. Mesenchymal stem cells (MSCs) are ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Frontiers in bioscience
دوره 16 شماره
صفحات -
تاریخ انتشار 2011